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ABSTRACT 

The Cassini-Huygens mission to Saturn is the end of an 
era for NASA; sending one large spacecraft equipped to 
carry out a multitude of scientific experiments. Future 
NASA missions will deploy many smaller spacecrafts in 
highly controlled spatial configurations in what is 
referred to as “formation flying.” Among the many 
challenges to this approach are: maintaining precise 
relative-positions, attitude relative to desired target, and 
communication for information sharing among all 
spacecraft in formation. In this paper we will investigate 
the advantages of using an intelligent fuzzy supervisory 
unit to modify the optimal regulator developed to 
maintain the relative position between spacecraft. The 
fuzzy agent modifies the optimal regulator base on 
information received from the navigation, 
communication, and control systems, and relative 
trajectory of the formation. This fuzzy agent seamlessly 
schedules and nonlinearly interpolates the optimal 
control gains. 
 
 
1. Introduction 
 
To improve reliability and science return value, reduce 
cost, and extend mission life cycle, many near-earth and 
deep-space future missions will deploy two or more less-
expensive cooperative spacecraft flying in formation as 
an alternative to a single, large, expensive spacecraft. 
These spacecraft will maintain a tight flying formation to 
take advantage of physically distributed sensors as shown 
in Figure 1. Unique measurements can be achieved by 
combining information from distributed sensors such as: 
stereoscopic view, simultaneous data collection from 
different angles, higher image resolution, to just name a 
few.  NASA’s EO-1 and Landsat-7 satellites, launched on 
November 21, 2000, are the first satellites used to 
demonstrate the capabilities of this new novel concept.  
 

1.1 Relative Dynamics 
 
The equation of motion of a satellite orbiting a plant in 
circular motion can be analyzed using the Clohessey-
Wiltshire equations [1,7]. The motion of the spacecraft is 
described by 
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Where, r

r
is the vector pointing from mass M to mass m, 

and ω is the angular velocity of the spacecraft. 
 
1.2 Relative Equations of Motion for Two 
Spacecraft 
 

We can use Eq. (1) to develop the equations of motions 
for a pair of master-slave spacecraft shown in Figure 1. 
Subscripts m and s are used for master and slave 
spacecraft respectively. With the master spacecraft in 
circular orbit, the inertial frame of reference attached to 
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Figure 1: Master Slave Relative Motion 



the Earth, and a moving coordinate frame attached to the 
master spacecraft (x-axis opposite the tangential velocity, 
y-axis pointing in the same direction as instantaneous 
position of master satellite, and z-axis perpendicular to 
the x-y plane), the dynamic equation governing motion of 
the slave satellite with respect to the master is given by 
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Where mF
r

and sF
r

are the external forces acting on the 

master and slave spacecraft respectively. Then 

F
r

represents relative differential drag, solar pressure, 
gravitational perturbations and inputs applied to the slave 
spacecraft.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The relative position of the slave spacecraft msr

r
can be 

expressed in terms of a moving rectangular coordinate (xm 
ym zm) system attached to the master spacecraft as shown 
in Figure 2: 
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and the relative angular velocity vector  

k̂ωω =r  
 

Equation (2) will then yield  
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Circular or near-circular motion of one spacecraft with 
respect to another can be analyzed using the linearized set 
of orbit equations by Clohessey-Wiltshire [11,12]. These 
equations, sometimes called Hill’s equations, are 
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Using these equations in Eq. (3) and collecting terms will 
result in relative nonlinear dynamics 
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where, 
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Equations (4)-(6) are the nonlinear equations of motion 
for the relative position of the slave spacecraft with 
respect to the master. Since in most spacecraft flying 
formation scenarios ),,( mmm zyxr >> , a set of linear 

equations of motion can be obtained by expanding g(.) 
and neglecting higher-order terms 
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Figure 2: Master Slave Relative Coordinate 
Axis 
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It has been shown [1-7] that the open-loop relative 
spacecraft equations of motion (7)-(9) are unstable, and 
any disturbances will cause the spacecraft to drift apart 
and will result in an eventual loss of formation. 
 
2. State Space Representation 
 
It is clearly apparent that the in-plane dynamics (xm, ym) 
are decoupled from the out-of-plane dynamics (zm). 
Defining 
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and using these equations in Eqs. (7)-(9), the in-plane and 
out-of-plane state space representations can be written as: 
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3. Optimal Control Design 
 
As can be seen from Eqs. (7)-(9), the relative in-plane and 
out-of-plane equations of motion are decoupled. For the 
remainder of this work we will concentrate on the control 
of in-plane dynamics. The in-plane state matrix, Ai, is 
unstable with eigenvalues at 0,0, and ±jω. It has been 

shown [5] that the reduced-order controllability pair (Ai, 
Bix) can be used to design an optimal controller to 
stabilize the formation.  
 
To reduce computational error and avoid working with an 
ill-conditioned state matrix, angular velocity is 
normalized to unity [1,5,6]. Note that in doing so, the 
orbital velocity (v=ωr) is also unity. 
Non-dimensionalizing orbital radius will also broaden the 
result to all circular Keplerian orbits.  
 
Discrete Linear quadratic regulator (LQR) theory is used 
to design the feedback gain matrix K = -XidUi such that 
the following cost function is minimized. 
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Ri and Qi are design-parameter matrices to emphasize the 
relative importance of fuel consumption verses trajectory 
optimization. By appropriate selection of these matrices, 
the eigenvalues of the closed-loop system, A-BixG, can be 
moved to obtain stability, and a desired balance between 
state trajectories time constants and fuel consumption.  
 
4. Fuzzy Supervisor 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
We now present a fuzzy logic supervisory agent that 
would coordinate and change the controller behavior 
based on information received from navigation, 
communication, and mission requirement units as shown 
in Figure 3. The fuzzy agent modifies the optimal 
controller gains based on received information from other 
units. A matrix of optimal controller gains is calculated in 

Figure 3: Fuzzy-Optimal Controller 
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the range from a very aggressive with less consideration 
for fuel expenditure to a very conservative, low-fuel 
consumption scenario. The fuzzy agent then modifies and 
interpolates the control system gains based on 
information that it receives from navigation, 
communication, and mission requirement modules. 
Flying formation requires cross-link communication 
between the spacecraft for navigation computation. If for 
any reason the navigation information is disrupted, the 
fuzzy agent will deploy a very conservative controller 
until such time that precise navigational information is 
received.  
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Figure 4: Mission membership functions 

0 1000 2000 3000 4000 5000 6000 7000 8000

0

0.2

0.4

0.6

0.8

1

Distance (Meters)

D
eg

re
e 

o
f 

m
em

b
er

sh
ip

very close close

mid range

far

 
Figure 5: Relative distance memberships 

As a sample of fuzzy agent task, using the Sugeno 
inference fuzzy system with mission requirement and the 
spacecraft relative distance as inputs and optimal 
feedback gains as the constant outputs of the fuzzy agent 
is considered and simulation programs are developed. The 
membership functions are shown in Figures 4 and 5.  
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Figure 6: Optimal gain interpolation 

Figure 6 shows the interpolation surface for the first 
optimal feedback gain. Note that the surface is nonlinear 
and the shape of this surface can change by modifying the 
fuzzy logic rule set. The simulation results of this system 
– with and without a fuzzy agent – are presented in the 
next section. 
 
5. Simulation Results 
 
Table 1: Optimal feedback gains 

α = 1 K1 K2 K3 K4 

β = 10 -0.2804 -4.7655 2.2660 -1.4161 
β = 100 -0.0935 -2.4996 1.3021 -0.4635 
β = 200 -0.0669 -2.0256 1.0693 -0.3128 
β = 300 -0.0550 -1.7847 0.9468 -0.2456 

 
Four sets of optimal control gains were generated as 
shown in Table 1. Each row corresponds to one design 
and the design parameter is selected from a very 
aggressive fuel consumption, β = 10, to a very moderate, 
β = 300, value.  

 
5.1 Simulation with Fuzzy Supervisory Agent 
 
To test this strategy, a simulation of in-plane equation of 
motion was developed.  The simulation generates the 
relative motion of salve spacecraft with respect to the 
master. A typical orbital radius, r = 7153 km, was used. 
Note that, the master spacecraft position need not be at 
the origin of state space and can be moved to any location 
with a simple coordinate transformation. The slave 
spacecraft response behavior was investigated over a 
range of initial conditions 
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Response of the relative motion of slave spacecraft with 
respect to master with nondimensionalized initial 
conditions of Xio = [-5.5e-5  0  0  0]T are shown in Figures 
7-10. The slave spacecraft has only initial perturbation in 
the xm direction. Because radial and tangent to orbital 
dynamics are coupled, we observe that the radial position 
of the slave spacecraft is perturbed from equilibrium point 
by a maximum of 90 meters before settling back to zero 
over a time period of 2.5 to 3.0 orbits. 
 
Figures 7-10 also show the response of the formation with 
fuzzy intelligent agent acting as a supervisory unit on the 
controller. The radial perturbation of the slave spacecraft 
is used as an input to the supervisory unit. The fuzzy 
agent modifies the optimal gains based on relative radial 
position of the slave spacecraft and the mission criterion. 
Optimal gain values are interpolated based on input 
information to this unit. A typical response with mission 
priority set to 50 (normal operating conditions) is 
presented here. As can be seen from Figure 7, the 
response is a compromise between the four optimal 
designs. Fuzzy response starts very aggressive but 
gradually and nonlinearly, seen in Figure 8, changes to a 
very moderate response as the slave spacecraft 
approaches equilibrium point. Phase plane and individual 
radial and tangent to orbit trajectory plots are show in 
Figures 7-10.  
 
Total fuel consumption is directly proportional to the 
integral of the applied input to the spacecraft. Figure 10 
shows the required input when the fuzzy supervisor is 
used as well as the four optimal scenarios. Again fuzzy 
controlled system exhibits a compromise fuel 
consumption behavior as compared to the four optimal 
scenarios. Figure 11 shows the response of the system for 
mission criteria set to 100 (critical). As can be seen the 
system response is very close to the most aggressive 
optimal design.  
 
6. Conclusion 
 
As we gain more knowledge and experience in near-earth 
and deep-space exploration, our expectation for scientific 
returns of each mission are increasing. The advances in 
navigation, communication, controls methods and the 
requirements of future NASA missions are now at a point 
that would necessitate autonomous and intelligent self-
reliant formation of spacecraft. 
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Figure 7: Optimal and fuzzy responses 

 
 

0 0.5 1 1.5 2 2.5
-450

-400

-350

-300

-250

-200

-150

-100

-50

0

50

Orbits

x 
ax

is
 (

M
et

er
s)

Mission = 50

β = 10
β = 100
β = 200
β = 300
solid: Fuzzy

 
Figure 8: X-axis responses 
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Figure 9: Y-axis responses 
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Figure 10: System input 
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Figure 11: Slave responses (critical mission) 

In this work we have shown a method of combining 
navigation and communication units to successfully 
modify the control law. An intelligent fuzzy logic-based 
agent is used to seamlessly and continuously interpolate 
between a set of optimal controller gains based on 
navigation and communication information. Fuzzy rules 
and embedded intelligence of the agent can easily be 
modified by adding or modified rules. Rules could even 
be conflicting, based on complexity and interactions 
between navigation, communication and control units.  
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